Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides
نویسندگان
چکیده
Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ FST ≤ 0.15) or high genetic differentiation (FST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different FST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.
منابع مشابه
RFLP analysis of nuclear DNA for study of phylogeny and domestication of tetraploid wheat
To study the phylogeny and domestication of tetraploid wheat species, variations in nuclear DNA of the cultivated and wild species were investigated by RFLP analysis. Twenty-two accessions representing 11 species of cultivated tetraploid wheat (Emmer wheat and Timopheevi wheat), 16 accessions of wild Emmer wheat (Triticum dicoccoides Körn.), 14 accessions of wild Timopheevi wheat (T. araraticum...
متن کاملWild emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication process
Domestication of plants and animals is the major factor underlying human civilization. Cultivated wheats refer mainly to two types: the hexaploid bread wheat (Triticum aestivum) accounting for about 95% of world wheat production, and the tetraploid durum wheat (T. durum) accounting for the other 5%. T. aestivum derived from a cross between domesticated emmer T. dicoccum and the goat grass Aegil...
متن کاملMap-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication.
The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. Wild emmer (Triticum turgidum ssp. dicoccoides), the tetraploid AB-genome progenitor of domesticated wheat has genes that confer tenacious glumes (Tg) that underwent genetic mutat...
متن کاملGenome-Wide Identification and Characterization of Salinity Stress-Responsive miRNAs in Wild Emmer Wheat (Triticum turgidum ssp. dicoccoides)
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs which regulate diverse molecular and biochemical processes at a post-transcriptional level in plants. As the ancestor of domesticated wheat, wild emmer wheat (Triticum turgidum ssp. dicoccoides) has great genetic potential for wheat improvement. However, little is known about miRNAs and their functions on salinity stress in wild ...
متن کاملAdaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at "Evolution Canyon", Mount Carmel, Israel
BACKGROUND "Evolution Canyon" (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution-in-action, highlighting the evolutionary processes of biodiversity evolution, adaptation, and incipient sympatric speciation. A major model organism in ECI is the tetraploid wild emmer wheat, Triticum dicoccoides (TD), the progenitor of cultivated emmer ...
متن کامل